Golovnaya hydropower plant is located 80 kilometers south of Dushanbe and has an installed generation capacity of 240 MW, making it the fourth largest hydropower plant in Tajikistan, after Nurek (3,000 MW), Sangtuda 1 (670 MW), and Baipaza (600 MW). Construction began in 1956, with the first unit commissioned in 1962. Since then, except for one unit, the plant has not undergone significant modernization or improvements to maintain its original performance in terms of efficiency, reliability, safety, or to reduce operation and maintenance costs. Consequently, most of the main electro-mechanical and hydro-mechanical equipment is now in poor condition.

The current project, for which FutureWater conducted a climate risk assessment (CRA), aims to include the rehabilitation of generation Unit 4 of the hydropower plant, which was not part of the ongoing efforts. Unit 4 is expected to add approximately 49 MW to the overall plant capacity. The CRA report evaluated the climate risk and adaptation prospects of the additional project and provides recommendations to enhance its adaptability and climate resilience, further securing this investment.

FutureWater supported this project by conducting a comprehensive review of climate and climate change research, studies, reports, and data related to the Golovnaya hydropower plant. Key findings include: (i) the project should be analyzed within the context of the entire Vakhsh River basin and system; (ii) the operations of upstream reservoirs and hydropower facilities will have a greater impact on Golovnaya than climate change itself; (iii) climate change will affect upstream facilities and thereby indirectly impact Golovnaya. The overall conclusion was that for the specific project (rehabilitating hydropower turbines), the climate risk is relatively low.

FutureWater’s impact was contributing to ensuring that the Golovnaya rehabilitation project will be climate-resilient, thereby securing the investment.

The Rogun HPP is a project that will have a large reservoir capable of providing seasonal regulation. It will supply firm energy during the winter months when demand for electricity is the highest in Tajikistan and will allow for exports of clean electricity to the Central Asia (CA) region and beyond. The Project could play the role of a balancing plant for Tajikistan and the broader Central Asia region to help integrate significant new solar PV and wind generation capacity into the network.

The Rogun HPP was initially designed in the 1970s as part of the development of the Vakhsh River cascade for integrated economic development in the Central Asian republics of the Soviet Union. Construction of Rogun HPP began in 1982 and was then interrupted by political changes resulting from the independence of Tajikistan and the other Central Asia countries. The World Bank in 2011 provided funding to the Government of Tajikistan to conduct a Technical and Economic Assessment Study and an Environmental and Social Impact Assessment. The Government of Tajikistan proceeded with construction without development partners’ involvement. In 2023 a technical assistance grant was approved by World Bank to improve the financial and commercial frameworks of the Rogun HPP Project and to enhance its technical, environmental and social sustainability.

ADB is committed under Strategy 2030 operating priority 3 to support its Developing Member Countries to ensure a comprehensive approach to build climate and disaster resilience. The climate risk management approach of the ADB aims to reduce risks resulting from climate change to investment projects by identifying climate change risks to project performance in the early stages of project development and incorporating adaptation measures in the design.

FutureWater will undertake a climate risk and vulnerability assessment for the Rogun HPP project. Technical studies assessing Rogun HPP’s exposure to natural hazards, hydrology, sedimentation, and
the impact of climate change projections have been completed. These findings are incorporated into the detailed technical design of the project. FutureWater will review all existing studies and any
related studies from reputable sources and consolidate the findings into a climate risk and vulnerability assessment (CRVA) for the project. FutureWater will ensure the methodological approach and technical rigor of the existing evidence base is sufficient, flagging potential insufficiencies which may have a material impact on the conclusions of the assessments. Related tasks to support due diligence will also include a Paris Alignment Assessment in accordance with ADB guidelines, a climate financing accounting estimate, a lifecycle greenhouse gas emission estimate, and Climate Change Assessment summarizing the CRVA findings.

The inital Climate Risk Assessment (CRA) by FutureWater in 2021 for the Asian Development Bank (ADB) identified the need for a detailed CRA for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing the design. This CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing. FutureWater will support ADB to ensure that the project will adequately address climate change mitigation and adaptation in accordance with ADB’s requirements.

FutureWater will make use of state-of-the-art downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles, and other relevant hazards and local information to develop this CRA. Insights from the CRA will be used to devise adaptation strategies. FutureWater will also ensure climate resilience measures are incorporated into the detailed design and environmental management planning before finalizing the climate change risk assessment. Together with the client’s engineering and safeguards team (Nepal Electricity Authority), FutureWater will ensure that the detailed design and environmental management plans incorporate all other recommended climate resilience measures and that their implementation is sufficiently detailed including bioengineering techniques, nature-based solutions, and an early warning system. FutureWater will collate the information and work closely with the national geological and GLOF consultants to review all available options for (i) sediment management plan, (ii) upstream catchment management plan, and (iii) emergency preparedness and response plan. FutureWater will provide several capacity-building sessions to the project team on the findings of the initial CRA, and the potential options for climate resilience measures to incorporate in the project design and operation to address the risks identified. Moreover, this project will develop a GHG account and prepare SARD climate change screening and Paris Agreement alignment assessment.

Over the last decades, efficient water resources management has been an important element of EU’s water policies, a topic that is addressed with renewed attention in the revised 2021 EU Adaptation Strategy, which lists the need for a knowledge-based approach towards water-saving technologies and instruments such as efficient water resources allocation. The IPCC special report on oceans and the cryosphere in a changing climate (2019) highlights the combination of water governance and climate risks as potential reasons for tension over scarce water resources within and across borders, notably competing demands between hydropower and irrigation, in transboundary glacier- and snow-fed river basins in Central Asia.

WE-ACT’s innovative approach consists of two complementary innovation actions: the first is the development of a data chain for a reliable water information system, which in turn enables the second, namely design and roll-out of a decision support system for water allocation. The data chain for the reliable water information system consists of real-time in-situ hydrometeorological and glaciological monitoring technology, modelling of the water system (including water supply and demand modelling and water footprint assessments) and glacier mass balance, data warehouse technology and machine learning. The roll-out of the DSS for climate-risk informed water allocation consists of stakeholder and institutional analyses, water valuation methods, the setup of the water information system to allow for a user-friendly interface, development of water allocation use cases, and feedback on water use through national policy dialogues.

The work of FutureWater within the WE-ACT study will focus on estimating the water demand and water footprints of the different users and activities within the Syr Darya river basin. Therefore, the effects of water allocation on water footprints, unmet water demand and environmental flow violations will be evaluated using a set of hydrological models such as SPHY and Water Allocation models (WEAP). This will be done for both the status quo and future scenarios.

For more information you can visit the WE-ACT project website.

Los recursos hídricos en todo el mundo están sometidos a una presión cada vez mayor. Entre otros factores, el cambio climático, el aumento de la demanda de alimentos y energía y la mejora de los niveles de vida han multiplicado por seis las extracciones mundiales de agua durante el último siglo, con importantes consecuencias para la calidad y disponibilidad del agua, la salud de los ecosistemas y la biodiversidad. como estabilidad social.

Al promover y vincular modelos de sistemas hídricos con modelos de sectores como la agricultura y la energía, la biodiversidad o el transporte de sedimentos, el Proyecto SOS-Agua pretende sentar las bases para un marco de evaluación holístico de los recursos hídricos en escalas espaciales. Basado en cinco estudios de caso de cuencas fluviales en Europa y Vietnam (la cuenca del río Júcar en España, la región del Alto Danubio, los deltas de los ríos Danubio y Rin, y la cuenca del río Mekong), un equipo interdisciplinario de investigadores de diez instituciones en ocho países Desarrollar un SOS multidimensional para el agua. El marco permitirá evaluar los ciclos de retroalimentación y las compensaciones entre las diferentes dimensiones del sistema hídrico y ayudará a abordar desafíos globales, regionales y locales urgentes.

Además de ir más allá del modelado de sistemas hídricos de última generación, el proyecto desarrollará un conjunto integral de indicadores para evaluar y monitorear el desempeño ambiental, social y económico de los sistemas hídricos. Los investigadores participantes colaborarán con autoridades regionales y locales, representantes de los usuarios del agua, organizaciones no gubernamentales y ciudadanos para cocrear escenarios futuros y vías de gestión del agua. Al racionalizar la planificación hídrica en diferentes niveles, se puede garantizar que la asignación del agua entre sociedades, economías y ecosistemas sea económicamente eficiente, socialmente justa y resiliente a las crisis.

En asociación con el líder del proyecto IIASA y socios como la Universidad de Utrecht y EAWAG, FutureWater es responsable de varias tareas bajo el paquete de trabajo que busca mejorar las tecnologías de observación de la Tierra existentes para monitorear el desempeño de los sistemas de agua. Se desarrollarán y probarán nuevas aplicaciones en el contexto de las cuencas del estudio de caso SOS-Agua de los ríos Mekong y Júcar.

Para más información, visita la web del proyecto.

The Asian Development Bank (ADB) identified the need for a detailed Climate Risk and Adaptation (CRA) assessment for the DKSHEP to understand the risk posed by the changing climate on hydropower and the environment. Therefore, the objective of this Climate Risk and Adaptation Assessment (CRA) is to assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. Therefore, this CRA covers both type 2 adaptation, related to system change and resilience building, as well as type 1 adaptation related to climate-proofing This CRA assesses historic trends in relevant climate-related variables and analyses climate projections for the DKSHEP. Based on these projections, an assessment of the current and future climate risks and vulnerabilities relating to the proposed project activities will be outlined. Finally, recommendations will be presented for climate adaptation measures.

The goal of the Asian Development Bank project ‘Renewable Energy for Climate Resilience’ in Bhutan is to diversify Bhutan’s energy portfolio. Bhutan’s power sector almost exclusively relies on hydropower generation. Hydropower, however, is vulnerable to climate change and natural disasters caused by climate change. The first deployment of non-hydro renewables at utility scale in Bhutan will be the first step to diversify the power generation portfolio, increase the resilience against severe weather events such as droughts, and complement the hydropower generation profile during the dry season. Other renewable energy resources such as solar photovoltaic (PV) and wind can complement hydropower in forming a more diversified electricity generation portfolio, which is, in healthy mix, resilient to changes in seasonal weather patterns and weather extremes that can adversely affect power supply.

Within this project ADB develops two solar and one wind plant. FutureWater has undertaken a Climate Risk and Adaptation assessment (CRA) for these power plants, with a two-fold objective:

  1. Validate the underlying rationale for diversification of Bhutan’s energy generation portfolio. The rationale is that more unreliable flows under climate change adversely affect the hydropower generation, in particular in the low flow season outside the monsoon season. This are the seasons with high potential for solar and wind energy, under the current climate conditions. The diversification of Bhutan’s energy generation portfolio is considered as type 2 adaptation, related to system change and resilience building in the climate change context.
  2. Assess the vulnerability of the project components to future climate change and recommend adaptation options for climate-proofing of the design. This is considered as type 1 adaptation, related to climate proofing.

The rationale for diversification is related to the expectation that climate change impacts on the cryosphere and hydrology in Bhutan will lead to less reliable flows, in particular outside the monsoon season. This will make hydropower a less reliable source of energy, which may not be sufficient during the dry season. During these periods outside the monsoon season, the climate in Bhutan is characterized by clear skies and daily patterns of wind. This intuitively makes solar and wind suitable energy sources to complement hydropower.

The CRA concludes that this rationale holds when validated with future scenarios of climate change and hydrological changes. These project more erratic flows, meaning on one hand more extremes on the high end (floods), in itself posing risks for hydropower infrastructure, but also through increasing sediment loads and risks of exposure to landslides and glacier lake outburst floods. On the other hand, a small increase in frequency and length of hydrological droughts is projected. Furthermore, projections of wind speed and incoming solar radiation indicate more or less stable conditions compared to the present day climate, further substantiating the rationale for portfolio diversification.

For adaptation and climate proofing the main recommendation is to verify that the proposed drainage systems at the sites are sized for extreme flows that are 20-30% larger in magnitude than current extremes. This is valid across return periods. The second high priority recommendation is to design foundations of solar, wind, and transmission infrastructure to withstand increased erosion rates and substantially increased risk of landslides in landslide prone areas. A third recommendation is to take into account lower production for solar panels at increased frequency of heat stress, as well as in the sizing of capacity of transmission infrastructure, which may have reduced capacity during periods of high heat stress.

«Gabon is a rapidly developing country that contains substantial amount of intact natural areas and biodiversity, and large untapped natural resource stocks, placing the country at the forefront of a green economic development opportunities. TNC supports the government in preserving Hydrologic Ecosystem Services which are essential to include into development projects as for example hydropower.

This study will assess these services for the Komo basin where certain pressure already exists due to forestry operations and planned hydropower. It will evaluate various management scenarios which may improve and sustain hydrological flow conditions and hydropower options. The analysis will help the government in implementing an integrated water resources management (IWRM) approach in this basin.

FutureWater will deliver this study through hydrological modeling and scenario analysis to assess how hydrological ecosystem services provision in the Komo basin can be improved by a series of potential alternative scenarios based.»

This glacio-hydrological assessment delivered river flow estimates for three intake locations of hydropower plants in Nakra, Georgia. The assessment included the calibration of a hydrological model, daily river discharge simulation for an extended period of record (1980-2015), and the derived flow duration curves and statistics to evaluate the flow operation of hydropower turbines. The daily flow calculations for the three sites (HPP1, HPP2 and HPP3) can be used in the hydropower calculations, and to assess the overall profitability of the planned investment, considering energy prices, demand, etc.

In the Nakra basin, glacier and snow model parameters were tuned to obtain accurate river flow predictions. Also, the latest technology of remote sensing data on precipitation and temperature (product ERA5) was used to reduce potential errors in flow estimates. Even though these flow estimates are useful for short-medium term evaluations on profitability of the planned investment, climate change pose a challenge for long-term evaluations. Glacier-fed and snow-fed systems, such as the Nakra basin, are driven by a complex combination of temperature and precipitation. Due to future increasing temperature, and changing rainfall patterns, glacier and snow cover dynamics change under climate warming. This can lead to shifts in the flows, like a reduction in lowest flows, and higher discharge peaks when the hydrological system shifts towards a more rainfall-runoff influenced system (Lutz et al. 2016). This can jeopardize the sustainability of the project on the long-term. To provide a better understanding of future river flows, it is recommended to develop a climate change impact assessment.

This hydrological assessment delivered river flow estimates for an intake location of a potential hydropower plant in the Lukhra river, Georgia. The assessment included a tuning of a hydrological model based on knowledge of neighboring basins, daily river discharge simulation for an extended period of record (1989-2019), and the derived flow duration curves and statistics to evaluate the flow operation of hydropower turbines. The daily flow calculations for the site can be used in the hydropower calculations, and to assess the overall profitability of the planned investment, considering energy prices, demand, etc.

In the Lukhra basin, snow model parameters were tuned to obtain accurate river flow predictions. Also, the latest technology of remote sensing data on precipitation and temperature (product ERA5-Land) was used to reduce potential errors in flow estimates. Even though these flow estimates are useful for short-medium term evaluations on profitability of the planned investment, climate change pose a challenge for long-term evaluations. Snow-fed systems, such as the Lukhra basin, are driven by a complex combination of temperature and precipitation. Due to future increasing temperature, and changing rainfall patterns, snow cover dynamics change under climate warming. This can lead to shifts in the flows, like a reduction in lowest flows, and higher discharge peaks when the hydrological system shifts towards a more rainfall-runoff influenced system (Lutz et al. 2016). This can jeopardize the sustainability of the project on the long-term. To provide a better understanding of future river flows, it is recommended to develop a climate change impact assessment.